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Overview

• Core Faculty and Quantitative Fellow in 
Educational Leadership Doctoral Program 
and Research Center 

• Ph.D. in Ed Measurement and Statistics from 
the University of Iowa 

• Research Interests: Structural Equation 
Modeling, Bayesian Estimation, and 
Generalizability Theory + Equity 

• P.I. for Steve’s Scholars Grant Project (FUSD) 

• Courses taught: Ed Statistics, Ed 
Measurement and Evaluation, Advanced 
Applied Quan Methods, Research in 
Education, etc. 

• PhD Candidate in Psychological and 
Quantitative Foundations at the 
University of Iowa 

• Fresno State Alum (BA in Psychology)

• Research Interests: latent variable 
modeling, Bayesian statistics, estimation 
theory, machine learning and 
applications to psychological research,  
computational statistics
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Part 1: Foundations
Presented by Hyeri Hong, Ph.D.



Outline of This Workshop 

§ Quiz – Thinking like Bayesian? 
§ Background 
§ Bayes vs. Frequentist 
§ Probability
§ Credibility Interval 
§ Priors 
§ Markov Chain Monte Carlo 
§ Convergence 

§ Model Fit 
§ Pop vs Soda vs Coke example 
§ Analysis demonstration 
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Thinking like a Bayesian? 

1. When flipping a fair coin, we say that “the probability of flipping 
Heads is 0.5.” How do you interpret this probability?

1. If I flip this coin over and over, roughly 50% will be Heads.
2. Heads and Tails are equally plausible.
3. Both a and b make sense.

Johnson, A. A., Ott, M. Q., & Dogucu, M. (2022). Bayes rules!: An introduction to applied Bayesian modeling. Chapman and 
Hall/CRC.
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Thinking like a Bayesian? 

2. Suppose that during a recent dentist’s visit, you have a 
decayed wisdom tooth in the upper gum. If you only get to ask 
the dentist one question, which would it be?

1.What’s the chance that I actually have the decayed wisdom tooth in 
my upper gum?

2.If in fact I don’t have the decayed wisdom tooth, what’s the chance 
that I would’ve gotten this test result? 
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Thinking like a Bayesian? 

Bayesian: In light of my test result (my cavity), what is the 
chance that I actually have the cavity? 

Frequentist: Testing (Data collection) is repeatable. You can 
get tested for the cavity over and over and over. 

If I don’t actually have the cavity (null hypothesis), what is the 
chance that I could be tested as having a cavity in my upper 
gum? 
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Bayesian Picture 
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Incoming information 

(5-star Korean restaurant) 

Data (Not tasty and very spicy but Expensive 
Bibimbab) 

Updated information (3-star restaurant) 

New data (Tasty Bulgogi) 

Updated information (4-star restaurant) 



Overview
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Why Bayesian? 
Benefits of Bayesian Methods 
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Expand the range of 
testable hypotheses; 
no null hypothesis 
significance testing 

1
Combine prior 
findings with new 
data, producing 
results that are 
automatic meta-
analyses 

2
Use prior findings, 
data from small-
sample studies is 
less problematic 

3
Allow estimating 
models when 
traditional estimation 
fails because of 
model complexity 
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Bayesian vs. Non-Bayesian (Frequentists) Approaches
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Frequentist: Maximum 
Likelihood, P values, 
Confidence Intervals, 
The Null Hypothesis 
Significance Testing

Frequentist: inhibits 
small-sample research 

and causes 
convergence issues 

(negative variance) 

Bayesian: Prior, 
Likelihood, Posterior, 
Credibility intervals, 

Small-Sample Research, 
Convergence 



Bayesian vs. Non-Bayesian (Frequentists) Approaches
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Frequentist Bayesian

Probability The relative frequency of an 
event in a hypothetical infinite 

series of events 
(how often something happens in 
an infinite series of observations)   

Degrees of belief or degrees of 
knowledge

Example 1: There is a .50 
probability that a fair coin will 

land heads. 

If the coin were flipped a 
hypothetical infinite number of 
times, heads would be seen half 

of the time. 

Someone’s belief is evenly 
divided between the coin 

landing heads or tails 



Bayesian vs. Non-Bayesian (Frequentists) Approaches

13

Probability Frequentist Bayesian

Example 2: Regression: the effect 
of an environment (x) on 

personality (y)

𝒀	 = 	𝒂	 + 	𝒃𝒙	 + 	𝒆	
𝒃: the Effect of Environment  

Treat the data in Y as random 

Treat the population parameters as 
fixed so that the null hypothesis must 
be treated as a single value (b = 0) to 
compute a p value for the observed 

data 

Treat the parameters as random

 Treat observed data in Y as fixed or 
constant (not being random) 

Using the p values, assuming the null 
hypothesis that b = 0 is true, how is 

the observed effect of an environment 
unlikely to happen or statistically 

significant?  

Estimate a sampling distribution for 
the estimated effect

Uncertainty in the effect of the 
environment is quantified by 

estimating its probability across a 
range of values, allowing direct 

probabilistic statements about the 
environment based on observed 

data 



Bayesian vs. Non-Bayesian (Frequentists) Approaches
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Probability Frequentist Bayesian

The probability that 
the environment has 

an impact on 
personality

Confidence Interval: We are 
95 % confident that the true 

average effect of environment 
on personality ranges between 

0.1 and 0.3

Credibility Interval: The 
probability the effect is 
between 0.1 and 0.3 is 

95% given the observed 
data



Bayesian 
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PROBABILITY ESTIMATION INFERENCE 



Bayesian Overview
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Ingredients in the Bayesian Soup : 
The prior, likelihood, and posterior 

𝑃 𝜃 ∣ 𝑦	 ∝ 𝑃 𝑦 𝜃 ×𝑃(𝜃)

Posterior distribution Likelihood Function Prior distribution

The posterior distribution of the parameters given the data 
is proportional to  the likelihood of the data given the parameters  times  the 
prior distribution of the parameters before observing the data

Bayes’ theorem tells us how to combine prior distribution with likelihood to construct posterior
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Ingredients in the Bayesian Soup : 
The prior, likelihood, and posterior 

𝑃 𝜃 ∣ 𝑦	 ∝ 𝑃 𝑦 𝜃 ×𝑃(𝜃)

Posterior distribution Likelihood Function Prior distribution

Bayesian Estimation and Inference : 𝜽 (random variables)
Bayes’ rule estimates 𝑃 𝜃 ∣ 𝑦	 = Posterior Probability of parameters in θ given 
observed data in y or Bayesian Posterior 
= parameters’ probability after observing the data 
= Results of a Bayesian analysis



Ingredients in the Bayesian Soup : 
The prior, likelihood, and posterior 

𝑷 𝜽 ∣ 𝒚	 ∝ 𝑷 𝒚 𝜽 ×𝑷(𝜽)

Posterior distribution Likelihood Function Prior distribution

are proportional to (i.e., ∝) 
Likelihood: the probability of the data as 
informed by the parameters, 𝑷 𝒚 𝜽 , 
Information contained in the data

multiplied (i.e., weighted) by 
Prior: Prior information before collecting 
the data, 𝑷(𝜽)



Example 
Regression: the effect of an Environment (x) on personality (y)

𝐘 = 	𝒂 + 𝒃𝒙 + 𝒆
𝒃: the effect of an environment 

Bayes estimation 𝛉: Regression slope 𝒃 

𝑷 𝜽 ∣ 𝒚	 : Results – The probability that the environment has an impact on personality 

∝ : proportional to 

𝑷 𝒚 𝜽 : the likelihood  - the observed data 

×: multiplied by 

𝑷(𝜽): the prior 

𝑷 𝜽 ∣ 𝒚	 ∝ 𝑷 𝒚 𝜽 ×𝑷(𝜽)



• 𝑃 𝜃 ∣ 𝑦	 : a probability density function where 
density describes the probability associated with 
the range of all possible b values 

• Which values are most probable for b, given the 
data? 

• The median or the peak as the most probable 
estimate 

Zyphur, M. J., & Oswald, F. L. (2015). Bayesian estimation and inference: A 
user’s guide. Journal of Management, 41(2), 390-420.

Regression: the effect of an 
Environment (x) on personality (y)
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𝑷 𝜽 ∣ 𝒚	 ∝ 𝑷 𝒚 𝜽 ×𝑷(𝜽)

Figure 1. Hypothetical Probability Distribution for a Regression Coefficient β 



Regression: the effect of an Environment (x) on 
personality (y)

• The probability associated with the effect of an 
environment on personality is highest at b = .20, with 
95% of the probability distribution falling inside a 
credibility interval between b = .10 and b = .30 
showing the most probable range of values for the 
effect 
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Bayesian inference: 
Credibility Interval 

§ Examine the range of parameter estimates that 
captures 95% or 99% of the posterior probability 
distribution

§ Shows the most probable range of values for the 
effect

§ “There is a 95% chance that the effect of an environment on 
personality ranges between 0.10 and 0.30.”

§ Traditional confidence intervals: an infinite number of 
replications of a study

§ Take the peak of the posterior distribution as the 
Bayesian estimate of a parameter

23



The Prior Distribution: 
How will different priors influence the posterior conclusions? 

(a) Informative priors based on previous findings and theoretical predictions 

(b) Diffuse, non-informative, or uninformative priors based on no prior 
knowledge or belief, or a desire to eliminate the influence of a prior 
distribution during estimation

(c) Empirical priors based on observed data
24



Informative Priors 
• Map previous findings or theory onto parameters in θ before conducting a new study 

• The more certain the prior information, the smaller the prior variability

• Findings from a meta-analysis of the effect of feedback on performance could be used 
to specify a prior distribution for a standardized regression coefficient 

• Example: Based on Kluger and DeNisi’s (1996) finding, a Cohen’s d of μd = .20 and 
variance σd

2 = .97, the d to r transformation leads to a Bayesian prior with a mean 
effect μβ = .20 and a variance σβ

2 = .44. 

Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on performance: a historical review, a meta-
analysis, and a preliminary feedback intervention theory. Psychological bulletin, 119(2), 254.

25
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Probability Density Distributions of 
Informative Priors, Likelihood, and Posteriors 



Informative Priors: Advantages 
 

Do not have

to estimate 
parameters from 
scratch; past 
research (findings) 
can inform the 
current research 
(e.g., meta-analysis) 

Facilitate

small-sample 
research, which 
involves a lot of 
uncertainty due to 
sampling error 
variance

Allow

estimating 
parameters with 
information from 
observed data 
(likelihoods) that can 
be supplemented 
or augmented with 
prior distributions 
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Uninformative (Vague, Diffuse, or Flat) Priors 

• When a study is exploratory, there may be little to no prior knowledge 
that can be used for estimation. 

• Prior knowledge may be diffuse because of contradictory findings or 
competing theories

• The prior is less informative (i.e., nearly flat)

• A prior distribution with a huge variance

- e.g., a normal distribution for an effect β with a mean μβ = 0 and variance 
σβ

2 = 1010. 

- The default setting in some statistics programs (e.g., Mplus) 
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Uninformative (Vague, Diffuse, or Flat) Priors 

• Eliminate the importance of priors in the estimation process 
to rely as much as possible on the likelihood (the data) 

-  Specify prior probabilities that allow the data (the likelihood) 
to dominate the estimation of posteriors through the likelihood 

-  No parameter values are more probable than others. 

 

29



Probability Density Distributions of 
Uninformative Priors, Likelihood, and 

Posteriors 
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Uninformative (Vague, Diffuse, or Flat) Priors 

• Uninformative priors allow Bayesian estimation to mimic 
frequentist estimation, because prior information does not 
influence results

• Fundamentally different from frequentist estimation 

• The “inverse” Bayesian interpretation: treat model parameters as 
random variables

31



Empirical Priors 

• Empirical priors come from empirical Bayes estimation, where prior 
distributions are estimated from a data set itself

• Advantage: using all observed data to estimate parameters that are 
associated with only a subset of the data, as in multilevel modeling, where all 
of the data are used to estimate a group’s mean

• In single-level models, empirical priors use the same observed data to 
estimate priors and likelihoods, thereby making an “undesirable double use 
of the data” 

• Priors that are similar to likelihoods lead to narrower posteriors 
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Empirical Priors 

• Priors similar to likelihoods: Narrower 
posteriors 

Zyphur, M. J., & Oswald, F. L. (2015). Bayesian estimation and 
inference: A user’s guide. Journal of Management, 41(2), 390-
420.
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The Choice of Prior and Sample Size 

§The choice of a prior distribution can be debated

§The impact of the prior in determining posteriors is 
important for smaller sample sizes and diminishes as 
sample sizes increase 
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The Choice of Prior and Sample Size 

§With large sample sizes, we need not work hard to formulate 
a prior distribution 

§ Even when empirical or informative priors are used, results 
from Bayesian analysis will converge with frequentist 
estimation as sample sizes increase yet still provide the 
advantage of the probabilistic interpretation of parameters 

§A study of prior dependence: The sensitivity of posterior 
distribution results to priors by using different priors for the 
same analysis and examining differences in posteriors
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Bayesian Estimation: Markov Chain Monte 
Carlo (MCMC)
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§ Monte Carlo: The most common method
§ Simulation with sampling, generating, and drawing 
§ Chain: The random values drawn by being linked and taking 

place sequentially 
§ The application of Markov Chains to simulate probability models 
§ Allows specifying many types of priors
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Bayesian Estimation: Markov Chain Monte Carlo (MCMC)

§ An iterative process: 
A prior distribution is 
specified 

§ Posterior values are 
estimated to build up 
and define the 
posterior distribution

§ MCMC is carried out 
from at least two 
starting points (i.e., at 
least two “chains”)



Assessing Convergence
The potential scale reduction (PSR) 

• Convergence can be evaluated by calculating the potential scale 
reduction (PSR) 

• The PSR : The ratio of total variance across chains
Pooled variance within chain

• Once this ratio reflects very little variance between chains when 
compared to within-chain variance (i.e., PSR < 1.05), estimation is 
halted because different iterative processes (i.e., different chains) 
yield equivalent results
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Bayesian inference: Model Fit and Comparisons

§Absolute Model Fit: 
Posterior predictive model checking (PPMC)
-Posterior predictive p-value (PPp)

§Relative Model Fit 
Deviance Information Criterion (DIC)

§Approximate Model Fit 
Bayesian comparative fit index (BCFI)
Bayesian Tucker–Lewis index (BTLI)
Bayesian root mean square error of approximation (BRMSEA)
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Model Fit and Comparisons: 
Absolute Model Fit 

Posterior Predictive Model Checking (PPMC)

• Answers the questions

- “Do the estimated parameters in the model produce data that look like the 
observed data?” 

- “Does my model fit my data well?” : Simulated data based on the model will 
resemble the observed data 

• Samples posterior estimates of model parameters 

• Generate a data set that is the same size as the observed data set 

• The probability of the observed data and the probability of the generated data are 
then each estimated with χ2 values, and the latter χ2 value is subtracted from the 
former

• This is done over many iterations, which creates a distribution of the χ2 differences

40



• Positive average differences in χ2 values: poor model fit, meaning the 
observed data have larger χ2 values than generated data. 

• The average χ2 difference between observed and generated data sets 
equals zero: When the model conforms to the data, the observed and 
generated data are equally likely

• Two sources of uncertainty

- uncertainty in sample data (by comparing observed versus generated data) 

- uncertainty in parameters themselves (by sampling parameters from the 
posterior distribution). 

• Frequentist approaches assume fixed parameters and do not include this 
latter source of uncertainty 41

Model Fit and Comparisons:
Absolute Model Fit 

Posterior Predictive Model Checking (PPMC)



Model Fit and Comparisons: 
Absolute Model Fit

Posterior Predictive Model Checking (PPMC)
• Quantify misfit from PPMC

• The χ2 difference values: posterior predictive p values (PPP)

• PPP: The proportion of times that the observed data are more probable than 
the generated (simulated) data (i.e., the proportion of times observed data 
have a smaller χ2 than the generated data). 

• PPP values of .50: Good model fit 

• Small PPP values (e.g., <.05): poor model fit 

- The observed data fit better than generated data very infrequently (e.g., less 
than 5% of the time)

- Your data are far off from their predictive distribution

42
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Model Fit and Comparisons: 
Relative Model Fit 

Deviance Information Criterion

§ Deviance Information Criterion (DIC; B.Muthén, 2010). 
: Late 1990s and early 2000s 
§ DIC rewards models that strike a balance between parsimony 

and fit 

§ Smaller DIC values indicate better models
§ Have issues when parameters are discrete 
§ Not fully Bayesian 



Model Fit and Comparisons
 Approximate Fit Indices: BCFI, BTLI, BRMSEA 
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§ RMSEA, CFI, and TLI in SEM: Mplus Bayesian framework 

§ Bayesian comparative fit index (BCFI): > .95 excellent fit 

§ Bayesian Tucker–Lewis index (BTLI; Garnier-Villarreal & Jorgensen, 2020): > .95 
excellent fit 

§ Bayesian root mean square error of approximation (BRMSEA; Hoofs et al., 2018)
- Smaller the better 

- Effective in large samples (N > 1000) 

§ Based on discrepancies between actual and replicated data at each MCMC iteration in a 
similar way to the PPMC technique 

§ Intended to be used with large sample sizes (N > 100 or 200)

§ Issues with overfitting  
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Bayes Rules Example: Pop vs Soda vs Coke  

§ Our word choices can reflect where we live

§ In Korea, we use the different words for Korean pancake 

§ Suppose you’re watching an interview of somebody that lives in the United States

§ Pop vs Soda dataset in the bayesrules package (Dogucu, Johnson, and Ott 2021) 

§ 374,250 responses to a volunteer survey conducted at popvssoda.com

Letting A denote the event that a person uses the word “pop,”

The following regional likelihoods: Percentage of people that use the term “pop.

L(M|A)=0.6447 : 64.47% of people in the Midwest 

L(N|A)=0.2734 : 27.34 % of people in the Northeast 

L(S|A)=0.0792 : 7.92% of people in the South 

L(W|A)=0.2943 : 29.43% of people in West 

Johnson, A. A., Ott, M. Q., & Dogucu, M. (2022). Bayes rules!: An introduction to applied Bayesian modeling. Chapman and Hall/CRC.
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Without knowing anything about this person, U.S. Census figures provide prior information about the region in 
which they might live: 
the Midwest (M), Northeast (N), South (S), or West (W).

This prior model

Based on population statistics only, 
P(M) = 0.21: there’s a 21% prior probability that the interviewee lives in the Midwest 
P(N) = 0.17: there’s a 17% prior probability that the interviewee lives in the Northeast 
P(S)=0.38: there’s a 38% prior probability that the interviewee lives in the South 
P(W) = 0.24: there’s a 24% prior probability that the interviewee lives in the West 

The South is the most populous region and the Northeast the least (P(S)>P(N))

Bayes Rules Example: Pop vs Soda vs Coke  

region M N S W Total

Probability 0.21 0.17 0.38 0.24 1
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Weighing the prior information about regional populations with the data that the interviewee used 
the word “pop,” what results can we get? 

For example, because 38% of people live in the South but that “pop” is not used a lot in that 
region, what’s the posterior probability that the interviewee lives in the South? 

A: the event that a person uses the word “pop”
S: South

P(S|A)= P(S)∗L(S|A)
P(A) = the prior probability P(S)∗likelihood L(S|A)

marginal distribu6on of A
= Posterior Prob of S given A 

P(A)=L(M|A)P(M)+L(N|A)P(N)+L(S|A)P(S)+L(W|A)P(W)
=0.6447⋅0.21+0.2734⋅0.17+0.0792⋅0.38+0.2943⋅0.24≈0.2826

-> There’s a 28.26% chance that a person in the U.S. uses the word “pop”

Bayes Rules Example: Pop vs Soda vs Coke  



48

P(S|A)= P(S)∗L(S|A)
P(A)  = the prior probability P(S)∗likelihood L(S|A)

marginal distribu\on of A
= Posterior Prob of S given A 

P(S) = .38 : Prior probability that the interviewee lives in the South 
L(S|A) = .0792 : Likelihoods (Percentage of people in the south that use the term pop)
P(A) = .2826 : Marginal Distribution 

𝑃(𝑆|𝐴)=  .()∗.+,-...)./  ≈     0.1065

 - a roughly 10.65% posterior chance that the interviewee lives in the South

Bayes Rules Example: Pop vs Soda vs Coke  
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Bayes Rules Example: Pop vs Soda vs Coke  
  

We can similarly update our understanding of the interviewee living in the Midwest, Northeast, or West. 

The resulting posterior model of region alongside the original prior. 

Upon hearing the interviewee use “pop,” 

most likely that they live in the Midwest and least likely that they live in the South

Region M N S W Total

Prior probability 0.21 0.17 0.38 0.24 1

Posterior probability 0.4791 0.1645 0.1065 0.2499 1
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Demo : Bayesian Structural Equation Model

Hong, H., Vispoel, W. P., & Martinez, A. J. (2024). Applying SEM, Exploratory SEM, and 
Bayesian SEM to Personality Assessments. Psych, 6(1). https://www.mdpi.com/2624-
8611/6/1/7

- IPIP-NEO-120 Agreeableness and Mplus 8.10 

Vispoel, W. P., Lee, H., Xu, G., & Hong, H. (2022). Expanding bifactor models of psychological 
traits to account for multiple sources of measurement error. Psychological assessment, 34(12), 
1093. DOI: 10.1037/pas0001170

- BFI2 data and Blavaan Package in R 

https://doi.org/10.1037/pas0001170

